"Cubic equation and intersection of conic sections" by Omar Khayyam - the first page of two-chaptered manuscript kept in Tehran University

**عمر خیام - ****Omar Khayyám **

(1048–1131) was a Persian polymath: philosopher, mathematician, astronomer and poet. He also wrote treatises on mechanics, geography, mineralogy, music, climatology and theology.

Born in Nishapur, at a young age he moved to Samarkand and obtained his education there, afterwards he moved to Bukhara and became established as one of the major mathematicians and astronomers of the medieval period. He is the author of one of the most important treatises on algebra written before modern times, the *Treatise on Demonstration of Problems of Algebra,* which includes a geometric method for solving cubic equations by intersecting a hyperbola with a circle. He contributed to a calendar reform.

His significance as a philosopher and teacher, and his few remaining philosophical works, have not received the same attention as his scientific and poetic writings. Zamakhshari referred to him as “the philosopher of the world”. Many sources have testified that he taught for decades the philosophy of Ibn Sina in Nishapur where Khayyám was born and buried and where his mausoleum today remains a masterpiece of Iranian architecture visited by many people every year.

Outside Iran and Persian speaking countries, Khayyám has had an impact on literature and societies through the translation of his works and popularization by other scholars. The greatest such impact was in English-speaking countries; the English scholar Thomas Hyde (1636–1703) was the first non-Persian to study him. The most influential of all was Edward FitzGerald (1809–83), who made Khayyám the most famous poet of the East in the West through his celebrated translation and adaptations of Khayyám’s rather small number of quatrains (*rubaiyaa*s) in *Rubáiyát of Omar Khayyám*.

source: wikipedia